Thymosin β4-Frag 500+ References

Thymosin Beta4 Fragment Ac-SDKP:

(1) Masuyer, Geoffrey, et al. “Structural Basis of Ac-SDKP Hydrolysis by Angiotensin-I Converting Enzyme.” Scientific Reports, vol. 5, no. 1, 25 Sept. 2015, 10.1038/srep13742.

(2) Nakagawa, Pablo, et al. “Ac-SDKP Decreases Mortality and Cardiac Rupture after Acute Myocardial Infarction.” PloS One, vol. 13, no. 1, 2018, p. e0190300, pubmed.ncbi.nlm.nih.gov/29364896/, 10.1371/journal.pone.0190300.

(3) Jin, Fuyu, et al. “Ac-SDKP Attenuates Activation of Lung Macrophages and Bone Osteoclasts in Rats Exposed to Silica by Inhibition of TLR4 and RANKL Signaling Pathways.” Journal of Inflammation Research, vol. 14, 2021, pp. 1647–1660, pubmed.ncbi.nlm.nih.gov/33948088/, 10.2147/JIR.S306883.

(4) Xu, Hong, et al. “A New Antifibrotic Target of Ac-SDKP: Inhibition of Myofibroblast Differentiation in Rat Lung with Silicosis.” PLoS ONE, vol. 7, no. 7, 3 July 2012, p. e40301, 10.1371/journal.pone.0040301.

(5) Srivastava, Swayam Prakash, et al. “Inhibition of Angiotensin-Converting Enzyme Ameliorates Renal Fibrosis by Mitigating DPP-4 Level and Restoring Antifibrotic MicroRNAs.” Genes, vol. 11, no. 2, 18 Feb. 2020, p. E211, pubmed.ncbi.nlm.nih.gov/32085655/, 10.3390/genes11020211.

(6) Shifeng, Li, et al. “Ac-SDKP Increases α-TAT 1 and Promotes the Apoptosis in Lung Fibroblasts and Epithelial Cells Double-Stimulated with TGF-β1 and Silica.” Toxicology and Applied Pharmacology, vol. 369, 15 Apr. 2019, pp. 17–29, www.sciencedirect.com/science/article/abs/pii/S0041008X19300729, 10.1016/j.taap.2019.02.015.

(7) Kumar, Nitin, and Congcong Yin. “The Anti-Inflammatory Peptide Ac-SDKP: Synthesis, Role in ACE Inhibition, and Its Therapeutic Potential in Hypertension and Cardiovascular Diseases.” Pharmacological Research, vol. 134, Aug. 2018, pp. 268–279, 10.1016/j.phrs.2018.07.006.

(8) Peng, Hongmei, et al. “Ac-SDKP Inhibits Transforming Growth Factor-β1-Induced Differentiation of Human Cardiac Fibroblasts into Myofibroblasts.” American Journal of Physiology-Heart and Circulatory Physiology, vol. 298, no. 5, May 2010, pp. H1357–H1364, 10.1152/ajpheart.00464.2009.

(9) Li, Shifeng, et al. “[Inhibition Effect of N-Acetyl-Seryl-Aspartyl-Lysyl-Proline on Myofibroblast Differentiation of MRC-5 Human Fetal Lung Fibroblasts Inuced by Ang II].” Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi = Zhonghua Laodong Weisheng Zhiyebing Zazhi = Chinese Journal of Industrial Hygiene and Occupational Diseases, vol. 32, no. 11, 1 Nov. 2014, pp. 801–805, pubmed.ncbi.nlm.nih.gov/25579022/.

(10) Xu, Hong, et al. “A New Antifibrotic Target of Ac-SDKP: Inhibition of Myofibroblast Differentiation in Rat Lung with Silicosis.” PLoS ONE, vol. 7, no. 7, 3 July 2012, p. e40301, 10.1371/journal.pone.0040301.

(11) Pejman, Sina, et al. “Ac-SDKP Ameliorates the Progression of Experimental Autoimmune Encephalomyelitis via Inhibition of ER Stress and Oxidative Stress in the Hippocampus of C57BL/6 Mice.” Brain Research Bulletin, vol. 154, Jan. 2020, pp. 21–31, 10.1016/j.brainresbull.2019.09.014.

(12) Sharma, Umesh C., et al. “A Small Peptide Ac-SDKP Inhibits Radiation-Induced Cardiomyopathy.” Circulation: Heart Failure, vol. 11, no. 8, Aug. 2018, 10.1161/circheartfailure.117.004867.

(13) Cavasin, Maria A., et al. “Decreased Endogenous Levels of Ac-SDKP Promote Organ Fibrosis.” Hypertension, vol. 50, no. 1, July 2007, pp. 130–136, 10.1161/hypertensionaha.106.084103.

(14) Kassem, Kamal M., et al. “Tβ4–Ac-SDKP Pathway: Any Relevance for the Cardiovascular System?” Canadian Journal of Physiology and Pharmacology, vol. 97, no. 7, 1 July 2019, pp. 589–599, www.ncbi.nlm.nih.gov/pmc/articles/PMC6824425/, 10.1139/cjpp-2018-0570.

Thymogen:

(1) Khavinson VK, Lin'kova NS, Tarnovskaya SI. Short Peptides Regulate Gene Expression. Bull Exp Biol Med. 2016 Dec;162(2):288-292. doi: 10.1007/s10517-016-3596-7. Epub 2016 Dec 1. PMID: 27909961. 

(2) Avolio, Francesco et al. “Peptides Regulating Proliferative Activity and Inflammatory Pathways in the Monocyte/Macrophage THP-1 Cell Line.” International journal of molecular sciences vol. 23,7 3607. 25 Mar. 2022, doi:10.3390/ijms23073607

(3) Khavinson VK, Linkova NS, Chalisova NI, Ivko OM. The Use of Thymalin for Immunocorrection and Molecular Aspects of Biological Activity. Biol Bull Rev. 2021;11(4):377–82. doi: 10.1134/S2079086421040046. Epub 2021 Aug 16. PMCID: PMC8365293.

Salcaprozate sodium (SNAC):

  • Twarog, Caroline et al. “Intestinal Permeation Enhancers for Oral Delivery of Macromolecules: A Comparison between Salcaprozate Sodium (SNAC) and Sodium Caprate (C10).” Pharmaceutics vol. 11,2 78. 13 Feb. 2019, doi:10.3390/pharmaceutics11020078
  • Zhu Q, Chen Z, Paul PK, Lu Y, Wu W, Qi J. Oral delivery of proteins and peptides: Challenges, status quo and future perspectives. Acta Pharm Sin B. 2021 Aug;11(8):2416-2448. doi: 10.1016/j.apsb.2021.04.001. Epub 2021 Apr 29. PMID: 34522593; PMCID: PMC8424290.
  • Aroda, V.R., Blonde, L. & Pratley, R.E. A new era for oral peptides: SNAC and the development of oral semaglutide for the treatment of type 2 diabetes. Rev Endocr Metab Disord 23, 979–994 (2022). https://doi.org/10.1007/s11154-022-09735-8