• North BJ, Sinclair DA. The intersection between aging and cardiovascular disease. Circ Res. 2012 Apr 13;110(8):1097-108. doi: 10.1161/CIRCRESAHA.111.246876. PMID: 22499900; PMCID: PMC3366686.
  • Marian AJ, Bhatnagar A, Bolli R, Izpisua Belmonte JC. Introduction to Cardiovascular Aging Compendium. Circ Res. 2018 Sep 14;123(7):737-739. doi: 10.1161/CIRCRESAHA.118.313940. PMID: 30355084.
  • Abdellatif M, Sedej S, Kroemer G. NAD+Metabolism in Cardiac Health, Aging, and Disease. Circulation. 2021 Nov 30;144(22):1795-1817. doi: 10.1161/CIRCULATIONAHA.121.056589. Epub 2021 Nov 29. PMID: 34843394.
  • Matasic DS, Brenner C, London B. Emerging potential benefits of modulating NAD+ metabolism in cardiovascular disease. Am J Physiol Heart Circ Physiol. 2018 Apr 1;314(4):H839-H852. doi: 10.1152/ajpheart.00409.2017. Epub 2017 Dec 22. PMID: 29351465; PMCID: PMC5966770.
  • NAD3®:

    • Roberts, M.D.; La Monica, M.B.; Raub, B.; Sandrock, J.E.; Ziegenfuss, T.N.; Smith, R.; Dwaraka, V.B.; Lopez, H.L. The Effects of a Multi-Ingredient Supplement Containing Wasabia Japonica Extract, Theacrine, and Copper (I) Niacin Chelate on Peripheral Blood Mononuclear Cell DNA Methylation, Transcriptomics, and Sirtuin Activity. Physiologia 2023, 3, 233-246.
    • Roberts MD, Osburn SC, Godwin JS, Ruple BA, La Monica MB, Raub B, Sandrock JE, Ziegenfuss TN, Lopez HL. Enhance Trial: Effects of NAD3® on Hallmarks of Aging and Clinical Endpoints of Health in Middle Aged Adults: A Subset Analysis Focused on Blood Cell NAD+ Concentrations and Lipid Metabolism. Physiologia. 2022; 2(1):20-31.
    • Sheng YY, Xiang J, Wang ZS, Jin J, Wang YQ, Li QS, Li D, Fang ZT, Lu JL, Ye JH, Liang YR, Zheng XQ. Theacrine From Camellia kuchaand Its Health Beneficial Effects. Front Nutr. 2020 Dec 17;7:596823. doi: 10.3389/fnut.2020.596823. PMID: 33392238; PMCID: PMC7773691.


    • Kurosawa Y, Nirengi S, Homma T, Esaki K, Ohta M, Clark JF, Hamaoka T. A single-dose of oral nattokinase potentiates thrombolysis and anti-coagulation profiles. Sci Rep. 2015 Jun 25;5:11601. doi: 10.1038/srep11601. PMID: 26109079; PMCID: PMC4479826.
    • Ero MP, Ng CM, Mihailovski T, Harvey NR, Lewis BH. A pilot study on the serum pharmacokinetics of nattokinase in humans following a single, oral, daily dose. Altern Ther Health Med. 2013 May-Jun;19(3):16-9. PMID: 23709455.
    • Jensen GS, Lenninger M, Ero MP, Benson KF. Consumption of nattokinase is associated with reduced blood pressure and von Willebrand factor, a cardiovascular risk marker: results from a randomized, double-blind, placebo-controlled, multicenter North American clinical trial. Integr Blood Press Control. 2016 Oct 13;9:95-104. doi: 10.2147/IBPC.S99553. PMID: 27785095; PMCID: PMC5066864.


    • Boelsma E, Kloek J. Lactotripeptides and antihypertensive effects: a critical review. Br J Nutr. 2009 Mar;101(6):776-86. doi: 10.1017/S0007114508137722. Epub 2008 Dec 5. PMID: 19061526.
    • Cicero AF, Colletti A, Rosticci M, Cagnati M, Urso R, Giovannini M, Borghi C, D'Addato S. Effect of Lactotripeptides (Isoleucine-Proline-Proline/Valine-Proline-Proline) on Blood Pressure and Arterial Stiffness Changes in Subjects with Suboptimal Blood Pressure Control and Metabolic Syndrome: A Double-Blind, Randomized, Crossover Clinical Trial. Metab Syndr Relat Disord. 2016 Apr;14(3):161-6. doi: 10.1089/met.2015.0093. Epub 2015 Dec 18. PMID: 26683986.
    • Jäkälä P, Vapaatalo H. Antihypertensive Peptides from Milk Proteins. Pharmaceuticals (Basel). 2010 Jan 19;3(1):251-272. doi: 10.3390/ph3010251. PMID: 27713251; PMCID: PMC3991029.
    • Tomiyama H, Fujii M, Shiina K, Ueda SI, Iwasaki Y, Matsumoto C, Chikamori T. Effects of Lactotripeptide Supplementation on Tele-Monitored Home Blood Pressure and on Vascular and Renal Function in Prehypertension - Randomized, Double-Blind, Placebo-Controlled, Cross-Over Study. Circ Rep. 2019 Oct 2;1(10):438-444. doi: 10.1253/circrep.CR-19-0061. PMID: 33693081; PMCID: PMC7897546.


      • Chen X, Xie Q, Zhu Y, Xu J, Lin G, Liu S, Su Z, Lai X, Li Q, Xie J, Yang X. Cardio-protective effect of tetrahydrocurcumin, the primary hydrogenated metabolite of curcumin in vivo and in vitro: Induction of apoptosis and autophagy via PI3K/AKT/mTOR pathways. Eur J Pharmacol. 2021 Nov 15;911:174495. doi: 10.1016/j.ejphar.2021.174495. Epub 2021 Sep 20. PMID: 34555398.
  • Lai CS, Ho CT, Pan MH. The Cancer Chemopreventive and Therapeutic Potential of Tetrahydrocurcumin. Biomolecules. 2020 May 29;10(6):831. doi: 10.3390/biom10060831. PMID: 32486019; PMCID: PMC7356876.
  • Aggarwal BB, Deb L, Prasad S. Curcumin differs from tetrahydrocurcumin for molecular targets, signaling pathways and cellular responses. Molecules. 2014 Dec 24;20(1):185-205. doi: 10.3390/molecules20010185. PMID: 25547723; PMCID: PMC6272158.
  •  Xiang L, Nakamura Y, Lim YM, Yamasaki Y, Kurokawa-Nose Y, Maruyama W, Osawa T, Matsuura A, Motoyama N, Tsuda L. Tetrahydrocurcumin extends life span and inhibits the oxidative stress response by regulating the FOXO forkhead transcription factor. Aging (Albany NY). 2011 Nov;3(11):1098-109. doi: 10.18632/aging.100396. PMID: 22156377; PMCID: PMC3249455.
  • Citrus Bergamot:

    • Nauman MC, Johnson JJ. Clinical application of bergamot (Citrus bergamia) for reducing high cholesterol and cardiovascular disease markers. Integr Food Nutr Metab. 2019 Mar;6(2):10.15761/IFNM.1000249. doi: 10.15761/IFNM.1000249. Epub 2019 Feb 28. PMID: 31057945; PMCID: PMC6497409.
    • Huang Y, Tocmo R, Nauman MC, Haughan MA, Johnson JJ. Defining the Cholesterol Lowering Mechanism of Bergamot (Citrus bergamia) Extract in HepG2 and Caco-2 Cells. Nutrients. 2021 Sep 10;13(9):3156. doi: 10.3390/nu13093156. PMID: 34579033; PMCID: PMC8469228.