References

Spermidine:

  • Hofer, S.J., Simon, A.K., Bergmann, M. et al. Mechanisms of spermidine-induced autophagy and geroprotection. Nat Aging (2022). https://doi.org/10.1038/s43587-022-00322-9
  • Madeo, Frank et al. “Spermidine in health and disease.” Science (New York, N.Y.) vol. 359,6374 (2018): eaan2788. doi:10.1126/science.aan2788
  • Ghosh, Indrani et al. “Spermidine, an autophagy inducer, as a therapeutic strategy in neurological disorders.” Neuropeptides vol. 83 (2020): 102083. doi:10.1016/j.npep.2020.102083
  • Madeo, Frank et al. “Spermidine: a physiological autophagy inducer acting as an anti-aging vitamin in humans?.” Autophagyvol. 15,1 (2019): 165-168. doi:10.1080/15548627.2018.1530929
  • Eisenberg, Tobias et al. “Cardioprotection and lifespan extension by the natural polyamine spermidine.” Nature medicine vol. 22,12 (2016): 1428-1438. doi:10.1038/nm.4222
  • Minois N, Carmona-Gutierrez D, Madeo F. Polyamines in aging and disease. Aging (Albany NY). 2011 Aug;3(8):716-32. doi: 10.18632/aging.100361. PMID: 21869457; PMCID: PMC3184975.

Nicotinamide mononucleotide (NMN)

  • Poddar, Saikat Kumar et al. “Nicotinamide Mononucleotide: Exploration of Diverse Therapeutic Applications of a Potential Molecule.” Biomolecules vol. 9,1 34. 21 Jan. 2019, doi:10.3390/biom9010034
  • Yoshino, Jun et al. “NAD+ Intermediates: The Biology and Therapeutic Potential of NMN and NR.” Cell metabolism vol. 27,3 (2018): 513-528. doi:10.1016/j.cmet.2017.11.002
  • Hong, Weiqi et al. “Nicotinamide Mononucleotide: A Promising Molecule for Therapy of Diverse Diseases by Targeting NAD+ Metabolism.” Frontiers in cell and developmental biology vol. 8 246. 28 Apr. 2020, doi:10.3389/fcell.2020.00246
  • Irie, Junichiro et al. “Effect of oral administration of nicotinamide mononucleotide on clinical parameters and nicotinamide metabolite levels in healthy Japanese men.” Endocrine journal vol. 67,2 (2020): 153-160. doi:10.1507/endocrj.EJ19-0313

Epigallocatechin-3-gallate (EGCG) from Green Tea

  • Chu, Chenyu et al. “Green Tea Extracts Epigallocatechin-3-gallate for Different Treatments.” BioMed research internationalvol. 2017 (2017): 5615647. doi:10.1155/2017/5615647
  • Musial C, Kuban-Jankowska A, Gorska-Ponikowska M. Beneficial Properties of Green Tea Catechins. Int J Mol Sci. 2020 Mar 4;21(5):1744. doi: 10.3390/ijms21051744. PMID: 32143309; PMCID: PMC7084675.

Alpha-ketoglutarate (AKG)

  • Liu S, He L, Yao K. The Antioxidative Function of Alpha-Ketoglutarate and Its Applications. Biomed Res Int. 2018 Mar 21;2018:3408467. doi: 10.1155/2018/3408467. PMID: 29750149; PMCID: PMC5884300.
  • He, Liuqin et al. “The Physiological Basis and Nutritional Function of Alpha-ketoglutarate.” Current protein & peptide science vol. 16,7 (2015): 576-81. doi:10.2174/1389203716666150630140157
  • Asadi Shahmirzadi, Azar et al. “Alpha-Ketoglutarate, an Endogenous Metabolite, Extends Lifespan and Compresses Morbidity in Aging Mice.” Cell metabolism vol. 32,3 (2020): 447-456.e6. doi:10.1016/j.cmet.2020.08.004

Dihydroquercetin (Taxifolin) 

  • Sunil, Christudas, and Baojun Xu. “An insight into the health-promoting effects of taxifolin (dihydroquercetin).” Phytochemistry vol. 166 (2019): 112066. doi:10.1016/j.phytochem.2019.112066

Apigenin

  • Salehi, Bahare et al. “The Therapeutic Potential of Apigenin.” International journal of molecular sciences vol. 20,6 1305. 15 Mar. 2019, doi:10.3390/ijms20061305

Luteolin

  • Nabavi, Seyed Fazel et al. “Luteolin as an anti-inflammatory and neuroprotective agent: A brief review.” Brain research bulletin vol. 119,Pt A (2015): 1-11. doi:10.1016/j.brainresbull.2015.09.002
  • Imran, Muhammad et al. “Luteolin, a flavonoid, as an anticancer agent: A review.” Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie vol. 112 (2019): 108612. doi:10.1016/j.biopha.2019.108612

Trimethylglycine (TMG)

  • Zhao, Guangfu et al. “Betaine in Inflammation: Mechanistic Aspects and Applications.” Frontiers in immunology vol. 9 1070. 24 May. 2018, doi:10.3389/fimmu.2018.01070

Resveratrol 

  • Li, Yi-Rong et al. “Effect of resveratrol and pterostilbene on aging and longevity.” BioFactors (Oxford, England) vol. 44,1 (2018): 69-82. doi:10.1002/biof.1400
  • Pyo, In Soo et al. “Mechanisms of Aging and the Preventive Effects of Resveratrol on Age-Related Diseases.” Molecules (Basel, Switzerland) vol. 25,20 4649. 12 Oct. 2020, doi:10.3390/molecules25204649

Pterostilbene

  • Musial, Claudia et al. “Modulation of Autophagy in Cancer Cells by Dietary Polyphenols.” Antioxidants (Basel, Switzerland) vol. 10,1 123. 16 Jan. 2021, doi:10.3390/antiox10010123
  • Kim, Hyunsook et al. “Chemistry of Pterostilbene and Its Metabolic Effects.” Journal of agricultural and food chemistry vol. 68,46 (2020): 12836-12841. doi:10.1021/acs.jafc.0c00070

Bergamot

  • Perna, Simone et al. “Efficacy of bergamot: From anti-inflammatory and anti-oxidative mechanisms to clinical applications as preventive agent for cardiovascular morbidity, skin diseases, and mood alterations.” Food science & nutrition vol. 7,2 369-384. 25 Jan. 2019, doi:10.1002/fsn3.903
  • Russo, Rossella et al. “Role of D-Limonene in autophagy induced by bergamot essential oil in SH-SY5Y neuroblastoma cells.” PloS onevol. 9,11 e113682. 24 Nov. 2014, doi:10.1371/journal.pone.0113682

AstraGin® 

  • Chang, Tsu-Chung et al. “Effect of ginsenosides on glucose uptake in human Caco-2 cells is mediated through altered Na+/glucose cotransporter 1 expression.” Journal of agricultural and food chemistry vol. 55,5 (2007): 1993-8. doi:10.1021/jf062714k
  • Wang, Chun-Wen et al. “A gut microbial metabolite of ginsenosides, compound K, induces intestinal glucose absorption and Na(+) /glucose cotransporter 1 gene expression through activation of cAMP response element binding protein.” Molecular nutrition & food research vol. 59,4 (2015): 670-84. doi:10.1002/mnfr.201400688